货币国际化与金融市场发展协调推进的风险分析—基于LIBOR利率的视角
摘要:通过对1986年1月—2011年9月间欧洲美元市场和欧洲日元3月期的LIBOR利率数据地研究,首先,文章发现这两组时间序列具有随机游走的特点,而且波动的程度还在不断扩大,这在很大程度上会为货币国际化背景下的金融市场正常运行带来风险。其次,从ARCH模型拟合的时间序列中可以看出,欧洲美元市场和欧洲日元市场3月期的LIBOR利率具有群集性特点,存在ARCH效应。最后,关于货币国际化后离岸金融市场中风险的监管模式,文章认为可以引入以稳定同业拆借市场利率波动为目标的监管思路,这样可以在极大程度上避免货币国际化对国际金融市场带来的金融风险。
关键词:货币国际化;金融市场;风险;LIBOR利率;ARCH模型
一、研究的背景
20世纪中期布雷顿森林体系的出现,欧洲金融市场和其他金融创新工具的不断发展,使国际金融市场的自动调节机制已经不可能发挥作用了。特别是随着国际经济一体化程度的不断深入,金融市场一旦出现了波动,就会通过LIBOR、TIBOR或是HIBOR等同业拆借利率扩散开来,这会为金融投机家提供了投机的手段与场所,对于国际化货币发行国和使用国际化货币国家的金融市场而言,产生了金融风险,带来了金融体系的不稳定。
货币的国际化是金融创新的一种具体形式,它是金融体系和金融市场上出现的一种新兴的事物。货币的国际化推进了金融业发展的历史,国际货币运行模式越有效,就越能限制国际货币体系中的货币数量,维持国际货币体系稳定(李建军,2009)[1],让离岸金融市场、跨国银行金融机构、金融衍生金融工具等得到了很好的推广。由于国际化货币的出现,各个金融机构之间、金融部门与其他部门之间、国内市场与国际市场之间相互依赖加深。
但是,这也意味着货币流通的任何环节出了漏洞都会危及整个金融体系,“伙伴风险”是需要关注的一个问题。
①
*在国际金融市场“伙伴风险”传递的过程中,欧洲货币市场的同业拆借利率起到了非常关键的作用。这是因为银行间的同业拆借市场在国际金融市场中占有重要的地位,其利率被认为是国际金融市场中的基准利率。一般而言,基准利率的形成,是利率市场化的重要前提(于建忠、刘湘成,2009)[2]。一方面,同业拆借市场中的利率市场化,意味着国际金融市场中的利率水平由市场的供求来决定,形成了利率决定、利率传导和利率市场化的机制。
另一方面,同业拆借期限虽短,但对维持银行资金周转与国际金融市场的正常运行具有非常重要的意义。这是因为同业拆借全凭信誉,无需提供抵押品,交易较为方便,存款和放款都是通过电话、电传联系。每笔交易少则几十万英镑,多则高达几百万英镑。所以说,虽然货币国际化的金融创新带来了财富效应、金融市场的业务效应和金融市场的福利效应,但是,从某种意义上而言,这个创新也通过同业拆借市场给国际金融市场带来了新的金融风险。
二、国内外相关研究综述
一般来说,货币国际化以后,金融监管的重点领域,应当是国际化货币流通的国际金融市场。货币金融市场是资金供应者和资金需求者通过金融工具进行交易而融通资金的市场,而同业拆借利率是货币的流通场所和空间的基础,研究同业拆借利率的自身波动是非常必要的。因为同业拆借利率波动为国际金融市场带来了风险,影响了货币国际化的推进。在国际金融市场中,比较典型的、有代表性的同业拆放利率有四种:伦敦银行间同业拆借利率(LIBOR)、东京银行间同业拆借利率(TIBOR)、新加坡银行同业拆借利率(SIBOR)和香港银行同业拆借利率(HIBOR)。而伦敦银行同业拆借市场是世界上最典型的、规模最大的同业拆借市场。
关于LIBOR市场波动率的研究,PhilipInyeobJi,FrancisIn(2010)通过对2006年3月1日—2008年11月11日澳洲美元、欧元、英镑、日元和美国美元每天波动的汇率值研究,发现LIBOR利率正在加深对其他国家货币币值波动的影响,特别是2007年以来的国际金融危机,LIBOR利率的波动更为频繁了,这在很大程度上给国际金融市场的金融资产带来了较大的风险。
[3]
Shin-ichiFukuda(2011)通过对2007年全球金融危机以来国际金融市场LIBOR利率和TIBOR利率变化的研究,发现金融危机增加了国家金融市场或区域金融市场贴现率的波动程度,带来了金融风险。由于美元是国际金融市场中重要的工具货币,欧洲美元市场中的LIBOR利率通过以美元计价、结算和储备的金融产品对国际金融市场带来了交易信用风险和资产流动风险。
[4]
另外,如果把影响LIBOR利率的因素联系进来,LIBOR利率的波动就显得更为频繁了,比如陈玮光等(2009)认为当通货膨胀率和道琼斯工业指数的增长率增加时,美元LIBOR的所有利率都上升;联邦基金利率增加时,利率的水平值增加,但长期利率增加幅度小于短期利率的增加幅度。
[5]
可见,波动率在某些时段上较低,说明同业拆借市场的价格保持稳定,带来风险的可能性在降低;而波动率在某些时段上较高,往往意味着同业拆借市场的价格出现了大幅度的变化,一方面,这会不利于国际金融市场的稳定。一般而言,一个稳定、发达、开放的金融市场是货币国际化的必要载体,它可以吸引国际借贷者和证券发行者在本国融资,可以培育丰富的金融产品,增强产品的流动性,为全球投资者提供一个多样化的资产配置平台(杨雪峰,2009)。
[6]
另一方面,银行业在国际金融市场中占有重要的地位,银行业国际金融业务对货币国际地位具有直接的影响(元惠萍,2011)[7]而同业拆借市场利率的剧烈波动会不利于发达银行业的发展。
从以往的研究来看,货币国际化带来了金融市场创新,而这个创新也通过同业拆借市场向国际金融市场带来了新的金融风险。同业拆借市场的价格从一个时期到另一个时期的变化过程中,常常表现为价格的波动,而是否会出现价格波动率聚集的现象,即大幅度波动聚集在某一段时间,而小幅度波动聚集在另一段时间上,这是中外学者重点关注的一个问题。但是,前人的研究并没有站在LIBOR利率的角度上,对货币国际化与国际金融市场发展协调推进带来的风险展开分析,没有对金融风险产生的内在机理进行大胆的探讨,特别是实证研究较少。这也说明本文研究LIBOR利率波动对于稳定货币国际化过程中的国际金融市场具有重要意义。
三、货币国际化与金融市场协调推进对同业拆借市场带来波动率的模型估计通过这一小节上文的分析,可以看出,随着货币国际化的不断推进,欧洲货币市场中LIBOR利率的波动,会对国际金融市场投资的金融产品造成冲击,产生投资的风险。本文试图站在LIBOR利率的角度上,对货币国际化与国际金融市场协调推进带来的风险展开分析。
(一)ARCH模型简述
在金融的时间序列分析中,广泛运用的一种特殊非线性模型就是ARCH模型(Auto-regressiveConditionallyHeteroskedasticity),最早由Engle于1982年提出。该模型主要的思想是,某一特定时刻t的随机误差方差不仅取决于以前的误差,还取决于自己以前的方差。对于通常的回归模型:yt=x\'tβ+εt(1)如果随机误差项的平方ε2t服从AR(q)过程,即:ε2t=α0+α1ε2t-1+α2ε2t-2+…+αqε2t-q+ηt,t=1,2,…(2)其中,ηt独立同分布,并满足E(ηt)=0,D(ηt)=λ2。则称模型(2)是自回归条件异方差模型,简称ARCH模型。
对于任意时刻t,εt的条件期望为:E(εt|εt-1,…)=槡ht·E(vt)=0(3)条件方差为:E(ε2t|ε2t-1,…)=ht·E(v2t)=ht(4)通过(4)式,可以看出序列条件方差具备随时间而变化的性质。
20世纪90年代以后,为了让ARCH模型的解释能力更为完善,不断有学者对ARCH模型进行完善和扩展,出现了多种变异的ARCH模型,形成了一个ARCH模型族(黄宗远,沈小燕,2007)[8],包括GARCH模型、ARCH-M模型、非对称ARCH模型、幂ARCH模型、成分ARCH模型等等。由于ARCH模型族可以很好的发现引起波动状态的因素,非常适合于描述金融市场时间序列的波动特征,所以,本文在这一小节中通过ARCH模型展开货币国际化对同业拆借市场带来波动率的模型估计。
(二)数据的说明
货币国际化对同业拆借市场带来的波动,是一个较长的历史时期。随着欧元的诞生,美元在国际货币体系中的地位继续得到了巩固,并形成了以美元为核心、欧元、日元、英镑等为补充的国际货币体系。同业拆借的利率种类较多,期限较长,关于同业拆借市场中的数据,本文在英国同业拆借市场中选取欧洲日元市场3个月期的LIBOR利率(LJPY),以及欧洲美元市场3个月期的LIBOR利率(LUSD)每个季度的数据在1986年1月—2011年9月之间的数据,共103个观测值,数据来源于欧洲中央银行数据库,为了减缓序列的波动程度,本文选择对这两个时间序列的变化率进行自然对数处理,即djpyt=LN(LJPYt/LJPYt-1)和dusdt=LN(LUSDt/LUSDt-1),LJPYt表示欧洲日元在t时刻的LIBOR利率,而LUSDt表示欧洲美元在t时刻的LIBOR利率。
(三)LIBOR利率的数据统计特征分析为了对LIBOR利率进行ARCH模型分析,也为了达到较好的模型解释能力,首先需要对数据的基本统计特征展开分析,以观察原始数据是否具有尖峰的分布特征,便于对下文展开分析。从图1中可以看出,欧洲日元市场3个月期的LIBOR利率的变化率的Sk=-0.404207,其结果小于零,表明其分布呈现出左偏态。而从峰度来看,K=9.844914,远远大于3,表明更多的变换率取值聚集在均值周围,同时部分变化率又远离均值。与标准正态分布(Sk=0,K=3)相比,欧洲日元市场3个月期的LIBOR利率的变化率呈现左偏,尖峰的分布特征,即“尖峰厚尾”。JB统计量为201.9021,P值接近于0,说明该时间序列至少在99%的置信水平上拒绝为正态分布的假设。