生物信息学在农学研究领域中的应用
基因,然后在作物中找到相应的基因及其位点。农作物的遗传学和分子生物学的研究积累了大量的基因序列、分子标记、图谱和功能方面的数据,可通过建立生物信息学数据库来整合这些数据,从而比较和分析来自不同基因组的基因序列、功能和遗传图谱位置[15]。在此基础上,育种学家就可以应用计算机模型来提出预测假设,从多种复杂的等位基因组合中建立自己所需要的表型,然后从大量遗传标记中筛选到理想的组合,从而培育出新的优良农作物品种。
5.生物信息学在生态环境平衡研究领域中的应用
在生态系统中,基因流从根本上影响能量流和物质流的循环和运转,是生态平衡稳定的根本因素。生物信息学在环境领域主要应用在控制环境污染方面,主要通过数学与计算机的运用构建遗传工程特效菌株,以降解目标基因及其目标污染物为切入点,通过降解污染物的分子遗传物质核酸 DNA,以及生物大分子蛋白质酶,达到催化目标污染物的降解,从而维护空气[16]、水源、土地等生态环境的安全。
美国农业研究中心(ARS) 的农药特性信息数据库(PPD) 提供 334 种正在广泛使用的杀虫剂信息,涉及它们在环境中转运和降解途径的16种最重要的物化特性。日本丰桥技术大学(Toyohashi University of Technology) 多环芳烃危险性有机污染物的物化特性、色谱、紫外光谱的谱线图。美国环保局综合风险信息系统数据库(IRIS) 涉及 600种化学污染物,列出了污染物的毒性与风险评价参数,以及分子遗传毒性参数[17]。除此之外,生物信息学在生物防治[18]中也起到了重要的作用。网络的普及,情报、信息等学科的资源共享,势必会创造出一个环境微生物技术信息的高速发展趋势。
6.生物信息学在食品安全研究领域中的应用
食品在加工制作和存储过程中各种细菌数量发生变化,传统检测方法是进行生化鉴定,但所需时间较长,不能满足检验检疫部门的要求,运用生物信息学方法获得各种致病菌的核酸序列,并对这些序列进行比对,筛选出用于检测的引物和探针,进而运用PCR法[19]、RT-PCR法、荧光RT-PCR法、多重PCR[20]和多重荧光定量PCR等技术,可快速准确地检测出细菌及病毒。此外,对电阻抗、放射测量、ELISA法、生物传感器、基因芯片等[21-25]技术也是未来食品病毒检测的发展方向。
转基因食品检测是通过设计特异性的引物对食品样品的DNA提取物进行扩增,从而判断样品中是否含有外源性基因片段[26]。通过对转基因农产品数据库信息的及时更新,可准确了解各国新出现和新批准的转基因农产品,便于查找其插入的外源基因片段,以便及时对检验方法进行修改。目前由于某些通过食品传播的病毒具有变异特性,以及检测方法的不完善等因素影响,生物信息学在食品领域的应用还比较有限,但随着食品安全检测数据库的不断完善,相信相关的生物信息学技术将在食品领域发挥越来越重要的作用。
生物信息学广泛用于农业科学研究的各个领域,但是仅有信息资源是不够的,选出符合自己需求的生物信息就需要情报部门,以及信息中介服务机构提供相关服务,通过出版物、信息共享平台、数字图书馆、电子论坛等信息媒介的帮助,科研工作者可快速有效地找到符合需要的信息。目前我国生物信息学发展还很不均衡,与国际前沿有一定差距,这需要从事信息和科研的工作者们不断交流,使得生物信息学能够更好地为我国农业持续健康发展发挥作用。
参考文献:
[1]Yockey HP,Platzman RP,Quastler H.Symposium on Information.Theory in Biology.Pergamon Press,New York,London,1958.
[2]郑国清,张瑞玲.生物信息学的形成与发展[J].河南农业科学,2002,(11):4-7.
[3]骆建新,郑崛村,马用信等.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23,(11):87-94.
[4]曹学军.基因研究的又一壮举——美国国家植物基因组计划[J].国外科技动态,2001,1:24-25.
[5]MICHAEL B.Genomics and plantcells:application ofgenomics strategies to arabidopsis cellbiology[J].PhilosTransR Soc Lond B Bio Sci,2002,357(1422):731-736.
[6]卢新雄.植物种质资源库的设计与建设要求[J].植物学通报,2006,23,(1):119-125.
[7]GUY D,NOEL E,MIKE A.Using bioinformatics to analyse germplasm collections [J].Springer Netherlands,2004:39-54.
[8]郑衍,王非.药物生物信息学,化学化工出版社,2004.1:214-215.
[9]俞庆森,邱建卫,胡艾希.药物设计.化学化工出版社,2005.1:160-164.
[10]Austen M,Dohrmann C.Phenotype—first screening for the identification of novel drug targets.Drug Discov Today,2005,10,(4):275-282.
[11]ARUN AGRAWAL,ASHWINI CHHATRE.State involvement and forest cogovernance:Evidence from the IndianHmi alayas.StComp International Developmen.t Sep 2007:67-86.
[12]TANG SY.Institutionsand collective action:Self-governance in irrigation [M].San Francisco,CA:ICSPress,1999.
[13]PUNGPO P,SAPARPAKORN P,WOLSCHANN P,et a.l Computer-aided moleculardesign of highly potentHIV-1 RT inhibitors:3D QSAR and moleculardocking studies of efavirenz derivatives[J].SAR QSAR EnvironRes,2006,17,(4):353-370.
[14]杨华铮,刘华银,邹小毛等.计算机辅助设计与合成除草剂的研究[J].计算机与应用化学,1999,16,(5):400.
[15]VASSILEV D,LEUNISSEN J,ATANASSOV A.Application of bioinformatics in plant breeding[J].Biotechnology & Biotechnological Equipment,2005,3:139-152.
[16]王春华,谢小保,曾海燕等.深圳市空气微生物污染状况监测分析[J].微生物学杂志,2008,28,(4):93-97.
[17]程树培,严峻,郝春博等.环境生物技术信息学进展[J].环境污染治理技术与设备,2002,3,(11):92-94.
[18]史应武,娄恺,李春.植物内生菌在生物防治中的应用[J].微生物学杂志,2009,29,(6):61-64.
[19]赵玉玲,张天生,张巧艳.PCR 法快速检测肉食品污染沙门菌的实验研究[J].微生物学杂志,2010,30,(3):103-105.
[20]徐义刚,崔丽春,李苏龙等.多重PCR方法快速检测4种主要致腹泻性大肠埃希菌[J].微生物学杂志,2010,30,(3) :25-29.
[21]索标,汪月霞,艾志录.食源性致病菌多重分子生物学检测技术研究进展[J].微生物学杂志,2010,30,(6):71-75
[22]朱晓娥,袁耿彪.基因芯片技术在基因突变诊断中的应用及其前景[J].重庆医学,2010,(22):3128-3131.
[23]陈彦闯,辛明秀.用于分析微生物种类组成的微生物生态学研究方法[J].微生物学杂志,2009,29,(4):79-83.
[24]王大勇,方振东,谢朝新等.食源性致病菌快速检测技术研究进展[J].微生物学杂志,2009,29,(5):67-72.
[25]苏晨曦,潘迎捷,赵勇等.疏水网格滤膜技术检测食源性致病菌的研究进展[J].微生物学杂志,2010,30,(6):76-81.
[26]饶红,冯骞,傅浦溥等.生物信息学与食品安全检测[J].中国卫生检验杂志,2006,16,(6):767-768.