您的位置】:知源论文网 > 理工类论文 > 农业论文 > 正文阅读资讯:盐胁迫下植物光系统II的光谱学和蛋白质亚基研究进展

盐胁迫下植物光系统II的光谱学和蛋白质亚基研究进展

[作者:丁春霞等[来源:互联网]| 打印 | 关闭 ]


  Sudhir等[5]对钝顶螺旋藻的Western杂交结果表明,PSII核心蛋白D1降低40%、内周天线蛋白CP47显著下降,但17 kD蛋白上升。但Rabhi等[12]对盐生植物海马齿(Sesuvium portulacastrum)的研究发现,盐处理的海马齿的类囊体膜蛋白亚基D1、CP47和CP43未发生明显变化,LHCII降低了15%。Gong等[13]在钝顶螺旋藻中的研究结果也表明,盐处理后的螺旋藻类囊体膜蛋白亚基D1、CP47和CP43也未发生明显变化,但是33 kD蛋白含量下降。Sudhir等[5]的研究表明,NaCl会诱导螺旋藻CP47的降解,导致内周天线向PSII反应中心传递能量受到影响。Suzuk[14]对眼虫藻(Euglena gracilis)的研究发现,NaCl处理不仅去除了PSII的23 kD和17 kD蛋白,还去除了33 kD蛋白。Fan等[15]对真盐生植物欧洲海蓬子(Salicornia europaea)的研究结果表明,200 mmol·L-1盐处理条件下,PSII天线蛋白CP29、CP47表达量增加。Yu等[16]对盐生植物星星草(Puccinellia tenuiflora)的研究发现,盐胁迫下(150 mmol·L-1)星星草光合作用的下降与LHC的下调表达有关。Trotta等[17]对盐沼节黎属一种盐生植物(Arthrocnemum macrostachyum)的研究发现,33 kD蛋白、PsbS和 PsbR不受盐胁迫影响,但盐胁迫使LHCII含量下降约10%,而所有PSII反应中心蛋白在无NaCl处理时含量最低。笔者的研究表明,盐生植物毕氏海蓬子(Salicornia bigelovii)在400 mmol·L-1 NaCl处理下其生长和光合速率均高于非盐处理。通过Western杂交结果发现,盐处理下的PsaA/B、CP47、CP43和Lhcb1蛋白含量增加[18]。这说明,盐生植物不仅能够在高盐度条件下生存,而且更适于在盐渍条件下生长,缺盐反而会造成PSII蛋白含量的降低[19-20]。 
  目前,关于植物在盐胁迫下的PSII光谱学和蛋白质组成和表达尚缺乏系统研究。已有的研究结果表明,不同植物尤其是盐生植物和非盐生植物在光谱学和蛋白质组成和表达上对盐胁迫的响应是不同的,而这种不同可能反映了盐生植物的耐盐高光效机制,因为盐生植物之所以能够在高盐渍环境生存并生长良好,最根本的原因是它在高盐度条件下具有较高的光能利用效率,而这与PSII的结构与功能密切相关。 
  参考文献: 
  [1] NICKELSEN J, RENGSTL B. Photosystem II assembly: from cyanobacteria to plants[J]. Annual Review of Plant Biology, 2013, 64: 609-635. 
  [2] KOMENDA J, SOBOTKA R, NIXON P J. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria[J]. Current Opinion in Plant Biology, 2012, 15(3): 245-251. 
  [3] LIU Z F, YAN H C, WANG K B, et al. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution[J]. Nature, 2004, 428(6980): 287-292. 
  [4] 薛超,周峰.光谱技术及其在光合膜蛋白研究中的应用[J].北方园艺,2011(3):198-200. 
  [5] SUDHIR P R, POGORYELOV D, KOVACS L, et al. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis[J]. Journal of Biochemistry and Molecular Biology, 2005, 38(4): 481-485. 
  [6] CHAUHAN V S, SINGH B, SINGH S, et al. Isolation and characterization of the thylakoid membranes from the NaCl-resistant (NaCl(r)) mutant strain of the cyanobacterium Anabaena variabilis[J]. Current Microbiology, 2000, 41(5): 321-327. 
  [7] ZHANG T, GONG H M, WEN X G, et al. Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis[J]. Journal of Plant Physiology, 2010, 167(12): 951-958. 
  [8] FERRONI L, BALDISSEROTTO C, PANTALEONI L, et al. High salinity alters chloroplast morpho-physiology in a freshwater Kirchneriella species (Selenastraceae) from Ethiopian Lake Awasa[J]. American Journal of Botany, 2007, 94(12): 1972-1983.
     [9] MEHTA P, JAJOO A, MATHUR S, et al. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves[J]. Plant Physiology and Biochemistry : PPB / Societe Francaise de Physiologie Vegetale, 2010, 48(1): 16-20. 
  [10] WANG R L, HUA C, ZHOU F, et al. Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar[J]. Photosynthetica, 2009, 47(1): 125-127. 
  [11] SHU S, GUO S R, SUN J, et al. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine[J]. Physiologia Plantarum, 2012, 146(3): 285-296. 
  [12] RABHI M, GIUNTINI D, CASTAGNA A, et al. Sesuvium portulacastrum maintains adequate gas exchange, pigment composition, and thylakoid proteins under moderate and high salinity[J]. Journal of Plant Physiology, 2010, 167(16): 1336-1341. 
  [13] GONG H M, TANG Y L, WANG J, et al. Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells[J]. Biochimica et Biophysica Acta, 2008, 1777(6): 488-495. 
  [14] SUZUKI T, TADA O, MAKIMURA M, et al. Isolation and characterization of oxygen-evolving photosystem II complexes retaining the PsbO, P and Q proteins from Euglena gracilis[J]. Plant & Cell Physiology, 2004, 45(9): 1168-1175. 
  [15] FAN P X, FENG J J, JIANG P, et al. Coordination of carbon fixation and nitrogen metabolism in salicornia europaea under salinity: comparative proteomic analysis on chloroplast proteins[J]. Proteomics, 2011, 11(22): 4346-4367. 
  [16] YU J J, CHEN S X, ZHAO Q, et al. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora[J]. Journal of Proteome Research, 2011, 10(9): 3852-3870. 
  [17] TROTTA A, REDONDO-GOMEZ S, PAGLIANO C, et al. Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum[J]. Journal of Plant Physiology, 2012, 169(2): 111-116. 
  [18] ZHOU F, HUA C, QIU N W, et al. Promotion of growth and upregulation of thylakoid membrane proteins in the halophyte Salicornia bigelovii Torr. under saline conditions[J]. Acta Physiologiae Plantarum, 2015, 37(2): 1-7. 
  [19] TYYSTJRVI E. Photoinhibition of photosystem II[J]. Int Rev Cell Mol Biol, 2013, 300: 243-303. 
  [20] JIANG D, HUANG L F, LIN Y Q, et al. Inhibitory effect of Salicornia europaea on the marine alga Skeletonema costatum[J]. Science China Life Sciences, 2012, 55(6): 551-558.

Tags: