玉米穗行数遗传基础的研究进展
随着分子标记的快速发展,使人们对数量性状的认识进入到分子水平。利用分子标记技术进行数量性状QTL定位,是研究数量性状遗传变异的有效途径之一。迄今为止,在MAIZEGDB网站上注册了大约2 200个QTLs (www.maizegdb.org)。其中,玉米穗行数QTL已经被报道有一百个以上。然而,在不同群体或者环境下都能检测到的主效QTL甚少。5 000到10 000年前,玉米从其野生种祖先大刍草进化而来,在雌穗化结构上二者具有很大差异。大刍草穗行数只有2行,而玉米穗行数一般为8~20行以上。从大刍草驯化成玉米的过程中,遗传多样性显著减少。因此,野生种可能会为驯化和现代育种过程中染色体片段的选择提供重要线索。Doebley等[10]利用玉米与大刍草构建的F2群体在第2染色体标记umc34附近检测到一个控制穗行数的主效QTL,解释42%的表型变异。Cai等[11]利用大刍草衍生系的MT-6(穗行数为6)与B73构建的F2分离群体在bin2.02、bin4.06和bin5.03-5.05号染色体上检测到3个控制穗行数的主效QTL,且在3个环境下均可检测到。周强等[12]利用元分析方法将26个不同双亲分离群体定位的176个穗行数QTL整合到参考图谱IBM 2008 Neighbors上,发掘出25个“一致性”与效应值大于4.5的QTL。其中,bin1.09、bin2.07、bin4.09、bin5.01、bin5.03、bin7.02、bin9.06和bin10.04上检测到控制穗行数的主效MQTL,其初始QTL遗传贡献率的平均值分别为11.10%,10.32%,13.01%,10.87%,13.00%,18.30%,11.08%和12.36%。利用双亲构建的分离群体,如RILs、DH群体和回交群体,检测的主效QTL仅能解释双亲的等位变异,在育种实践的应用中有很大局限性。近年来关联作图方法被越来越多的应用于剖析多样性群体中不同等位基因的遗传效应,然而群体结构和稀有等位变异一直是关联分析的主要技术难题。联合连锁分析和关联分析可综合利用两种方法的优点,被认为是揭示玉米复杂数量性状的遗传基础的有效方法。Brown等[13]利用巢式关联群体(NAM),通过联合连锁和全基因组关联分析的方法,检测到36个玉米穗行数QTL。Liu等[14]精细定位并图位克隆了bin4.08控制玉米穗行数的主效QTL(KRN4),并进行了基因表达分析和关联分析验证。
玉米基因组7.02-7.04bin上检测到许多产量及其构成因子的QTL。Bommert 等[9]利用B73与Mo17构建的包含大约250个重组自交系的IBM群体,在7.02bin上检测到1个控制穗行数的QTL,解释6.07%的表型变异。Lu等[15]利用掖478与丹340构建的F2:3群体在bnlg339-umc1865区间上(7.03bin)检测到一个控制玉米穗行数的主效QTL,该QTL解释17.86%的表型变异,并在7个多样性环境中稳定表达。Sabadin等[16]利用热带自交系L-08-05F与L-14-4B构建的F2:3群体,在bnlg1094-bnlg434(7.02-7.03bin)区间上检测到1个控制穗行数的QTL,解释7.1%的表型变异,同时发现该区域还控制穗重、单株穗数、小区穗数。Ross等[17]利用SE-40与LE-37构建的F2及F2:3群体,在7.02-7.04bin染色体区段上也检测到控制穗行数的QTL。此外,许多产量相关性状的QTL被定位在玉米第7染色体7.03-7.04bin区间上,例如产量[18]、粒数[19]、粒质量[20]、干物质产量[21]、穗粗[22]和轴粗[23]。谭巍巍等[24]以掖478×黄早四构建的F2:3群体为材料,在7.02-7.03bin染色体区段上检测到1个在北京、河南和新疆3个不同生态区下均稳定表达的穗行数主效QTL,解释6.16%~14.83%的表型变异。周强等[12]通过元分析得到的8个平均遗传贡献率大于10%玉米穗行数MQTL中,bin7.02位置处的主效MQTL解释表型变异最高。由此可见,加快该位点主效基因的图位克隆和功能验证是当前玉米产量性状基因挖掘的重要工作。
通过挖掘穗行数性状主效QTL,开发紧密连锁的分子标记,使分子设计育种与常规育种紧密结合,才能有效地为通过分子技术改良玉米籽粒性状最终培育高产玉米新品种奠定基础。
参考文献:
[1] VOLLBRECHT E, SPRINGER P S, GOH L, et al. Architecture of floral branch systems in maize and related grasses[J]. Nature,2005, 436(7054):1119-1126.
[2] BORTIRI E, CHUCK G, VOLLBRECHT E, et al. Ramosa2 encodes a lateral oreral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize[J]. Plant Cell, 2006, 18(3):574-585.
[3] NAMIKO S N, NOBUHIRO N, SIMON M, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize[J].Nature,2006, 441(7090):227-230.
[4] ANDREA G, QIONG Z, JUNKO K, et al. The role of barren stalk1 in the architecture of maize[J]. Nature, 2004, 432(7017):630-635.
[5] RITTER M K, PADILLA C M, SCHMIDT R J. The maize mutant barren stalk1 is defective in axillary meristem development.[J]. American Journal of Botany, 2002, 89(2):203-210.
[6] MCSTEEN P, MALCOMBER S, SKIRPAN A, et al. Barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize[J]. Plant Physiology, 2007, 144(2):1000-1011.
[7] MCSTEEN P, HAKE S. Barren inflorescence2 regulates axillary meristem development in the maize inflorescence[J]. Development, 2001, 128(15):2881-2891.
[8] PETER B, CHINA L, JUDITH N, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005, 132(6):1235-1245.
[9] PETER B, NAMIKO SATOH N, David J. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus[J]. Nature Genetics, 2013, 45(3):334-337.
[10] DOEBLEY J, STEC A, WENDEL J, et al. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize[J]. Proceedings of the National Academy of Sciences, 1990, 87(24):9888-9892.
[11] CAI L, LI K, YANG X, et al. Identification of large-effect QTL for kernel row number has potential for maize yield improvement[J]. Molecular Breeding, 2014, 34(3):1087-1096.
[12] 周强, 王平喜, 程备久,等. 玉米穗行数性状QTL的元分析[J]. 玉米科学, 2014,22(2): 35-40.
[13] BROWN P J, UPADVAYULA N, MAHONE G S, et al. Distinct genetic architectures for male and female inflorescence traits of maize[J]. Plos Genetics, 2011, 7(11):1276-1280.
[14] LIU L, DU Y, SHEN X, et al. KRN4 controls quantitative variation in maize kernel row number[J]. Plos Genetics, 2015, 11(11):页码不详.
[15] LU M, XIE C X, LI X H, et al. Mapping of quantitative trait loci for kernel row number in maize across seven environments[J]. Molecular Breeding, 2011, 28(2):143-152.
[16] SABADIN P K, JUNIOR C L D S, SOUZA A P D, et al. QTL mapping for yield components in a tropical maize population using microsatellite markers[J]. Hereditas, 2008, 145(4):194-203.
[17] ROSS A J, HALLAUER A R, LEE M. Genetic analysis of traits correlated with maize ear length[J]. Maydica, 2006, 51(2):301-313.
[18] MELCHINGER A E, UTZ H F, SCHON C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects[J]. Genetics, 1998, 149(1):383-403.
[19] RIBAUT J M, JIANG C, GONZALEZ-DE-LEON D, et al. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies[J]. Theoretical & Applied Genetics, 1997, 94(6-7):887-896.
[20] SCHON C C, MELCHINGER A E. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines[J]. Crop Science, 1994, 34(2):378-389.
[21] LUBBERSTEDT T, MELCHINGER A E, KLEIN D, et al. QTL mapping in testcrosses of European flint lines of maize: I. comparison of different testers for forage yield traits[J]. Crop Science, 1997, 37(3):921-931.
[22] AUSTIN DF, LEE M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize[J]. Theoretical and Applied Genetics, 1996, 92:817-826.
[23] VELDBOOM L R, LEE M. Genetic Mapping of quantitative trait loci in maize in stress and nonstress environments: I. grain yield and yield components[J]. Crop Science, 1996, 36(5). 1310-1319.
[24] 谭巍巍, 王阳, 李永祥,等. 不同环境下多个玉米穗部性状的QTL分析[J]. 中国农业科学, 2011, 44(2):233-244.