论小波转换影像压缩模式
WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。
以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。 将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥」。如此才是WAVELET编码法主要的观念。
二、 影像压缩过程
原始图形资料 → 色彩模式转换 → DCT转换 → 量化器 → 编码器 → 编码结束
三、 编码的基本要素有三点
(一) 一种压缩/还原的转换可表现在影像上的。
(二) 其转换的系数是可以量化的。
(三) 其量化的系数是可以用函数编码的。
四、 现有WAVELET影像压缩工具主要的部份
(一) Wavelet Transform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。
(二) Filters(滤镜):这部份包含Wavelet Transform,和一些着名的压缩方法。
(三) Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。
(四) Entropy Coding(熵编码器):有两种格式,一种是使其减少,一种为内插。
(五) Arithmetic Coder(数学公式):这是建立在Alistair Moffat's linear time coding histogram的基础上。
(六) Bit Allocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。
肆、 WAVELET影像压缩未来的发展趋势
一、 在其结构上加强完备性。
二、 修改程式,使其可以处理不同模式比率的影像。
三、 支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。
四、 加强运算的能力,使其可支援更多的影像格式。
五、 使用WAVELET转换藉由消除高频率资料增加速率。
六、 增加多种的WAVELET。如:离散、零元树等。
七、 修改其数学编码器,使资料能在数学公式和电脑的位