您的位置】:知源论文网 > 医学类论文 > 临床医学 > 正文阅读资讯:谈人工神经网络在医学研究中的应用

谈人工神经网络在医学研究中的应用

[作者:未知[来源:知源论文网]| 打印 | 关闭 ]

摘要:  人工神经网络由于其具有高度的自适应性、非线性、善于处理复杂关系的特点,在许多研究领域得到了广泛应用,并取得了令人瞩目的成就。对其目前在医学研究领域中的应用做一简单综述。

关键词:  人工神经网络; 应用

人工神经网络(Artificial Neural Network,ANN)方法自从本世纪40年代被提出以来,许多从事人工智能、计算机科学、信息科学的科学家都在对它进行研究,已在军事、医疗、航天、自动控制、金融等许多领域取得了成功的应用。目前出现了许多模仿动物和人的智能形式与功能的某个方面的神经网络,例如,Grossberg提出的自适应共振理论(Adaptive Resonance Theory,ART),T-Kohenen的自组织特征映射网络(Self-Organizing feature Map,SOM),径向基函数网络(Radial Basis Function,RBF),Hopfield网等。进入90年代以后,由于计算机技术和信息技术的发展,以及各种算法的不断提出,神经网络的研究逐渐深化,应用面也逐步扩大,本研究对常用的神经网络方法及其在医学领域中的应用做一简单综述。
    1  自组织特征映射网络(self-organizing feature map,SOM)在基因表达数据分析中的应用
   1.1   方法介绍
    脑神经学的研究表明,人脑中大量的神经元处于空间的不同区域,有着不同的功能,各自敏感着各自的输入信息模式的不同特征。芬兰赫尔辛基大学神经网络专家T.Kohonen根据大脑神经系统的这一特性,于1981年提出了自组织特征映射网络,它模拟人的大脑,利用竞争学习的方式进行网络学习,具有很强的自组织、自适应学习能力,鲁棒性和容错能力,其理论及应用发展很快,目前已在信息处理、模式识别、图像处理、语音识别、机器人控制、数据挖掘等方面都有成功应用的实例。
    Kohonen网络由输入层和竞争层组成,网络结构见图1。输入层由N个神经元组成,竞争层由M个输出神经元组成,输入层与竞争层各神经元之间实现全互连接,竞争层之间实行侧向连接。设输入向量为x=(x1,…,xd)T ,输出神经元j对应的权重向量为wj=(wj1,…,wjd)T ,对每一输出神经元计算输入向量x 和权重向量wj 间的距离,据此利用竞争学习规则对权向量进行调节。在网络的竞争层,各神经元竞争对输入模式的响应机会,最后仅一个神经元成为胜利者,并对与获胜神经元有关的各权重朝着更有利于它竞争的方向调整,这样在每个获胜神经元附近形成一个“聚类区”,学习的结果使聚类区内各神经元的权重向量保持与输入向量逼近的趋势,从而使具有相近特性的输入向量聚集在一起,这种自组织聚类过程是系统自主、无教师示教的聚类方法,能将任意维输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变。网络通过对输入模式的学习,网络竞争层神经元相互竞争,自适应地形成对输入模式的不同响应,模拟大脑信息处理的聚类功能、自组织、自学习功能,实现用低维目标空间的点去表示高维原始空间的点,其工作原理和聚类算法及改进方法参见相关文献[1]。
    1.2  应用
    基因芯片技术的应用使得人们可以从基因水平探讨疾病的病因及预后,而基因芯片产生的数据具有高维度(变量多)、样本量小、高噪声的特点,样本量远小于变量数,如何从海量的数据中挖掘信息或知识成为重大课题。聚类分析是数据挖掘中的一类重要技术,传统方法主要有系统聚类、k-means聚类等,但在处理复杂非线性关系及变量间的交互作用时效果较差,受异常值影响较大。近年来神经网络技术法成为聚类领域的研究热点,其中自组织特征映射网络由于其良好的自适应性,其算法对基因表达数据的聚类有较高的稳定性和智能性,尤其在处理基因表达中有缺失数据及原始空间到目标空间存在非线性映射结构时有较好的体现,适用于复杂的多维数据的模式识别和特征分类等探索性分析,同时可实现聚类过程和结果的可视化[2]。目前Kohonen网络已被成功用到许多基因表达数据的分析中,Jihua Huang等[3]设计6×6的网络对酵母细胞周期数据进行分析,总正确率为67.7%;曹晖等[4]将其算法改进后用在酵母菌基因表达数据中,总正确率高达84.73%,有较高的聚类效能;邓庆山[5]将该模型与K平均值聚类方法结合用于公开的结肠基因表达数据集和白血病基因表达数据集,聚类的准确率分别为94.12%和90.32%。目前Kohonen网络在医学领域中主要应用前景有:① 发现与疾病相关的新的未知基因,对目标基因进一步研究,提高诊断的正确率,并对药物的开发研究提供重要的线索;② 对肿瘤组织的基因表达谱数据聚类,以期发现新的、未知的疾病亚型(肿瘤亚型),以便提出更加有针对性的治疗方案,为从分子水平对疾病分型、诊断、预后等提供依据;③ 发现与已知基因有相似功能的基因,为推断未知基因的可能功能提供线索。
    2  BP神经网络在医学研究中的应用
    2.1  BP神经网络在疾病辅助诊断中的应用
    2.1.1  方法介绍
    BP神经网络是目前应用最多的神经网络,一般由一个输入层(input layer)、一个输出层(output layer)、一个或几个中间层(隐层)组成。每一层可包含一个或多个神经元,其中每一层的每个神经元和前一层相连接,同一层之间没有连接。输入层神经元传递输入信息到第一隐层或直接传到输出层,隐层的神经元对输入层的信息加权求和,加一个常数后,经传递函数运算后传到下一个隐层(或输出层),常用的传递函数是logistic函数,即Φh=1/(1+exp(-z)) ,输出层神经元对前一层的输入信息加权求和经传递函数Φ0 (线性或logistic函数或门限函数)运算后输出,BP神经网络一般采用BP算法训练网络,关于BP算法及改进可参考相关文献[1]。
    人工神经网络具有强大的非线性映射能力,含一个隐层的网络可以实现从输入到输出间的任意非线性映射,是典型的非线性数学模型,建立BP神经网络模型的一般步骤为:① BP网训练集、校验集、测试集的确定;② 输入数据的预处理:使输入变量的取值落在0到1的范围内,如果是无序分类变量,以哑变量的形式赋值;③ 神经网络模型的建立及训练:学习率、传递函数、隐层数、隐单元数的选择,注意防止过度拟合。一般使用灵敏度、特异度、阳性预测值、阴性预测值、ROC曲线对模型的预测性能进行评价。
    2.1.2 

Tags: